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ABSTRACT: Early and precise diagnosis of breast cancer is paramount for enhancing patient survival rates and 

facilitating effective treatment strategies. This paper introduces an innovative hybrid diagnostic framework that 

integrates a custom-designed Convolutional Neural Network (CNN) for robust feature extraction with a Support Vector 

Machine (SVM) classifier for accurate final prediction. The CNN component is meticulously trained on the 

comprehensive CBIS-DDSM mammogram dataset, and the rich, intermediate features derived from its penultimate 

layer are subsequently employed to train the SVM model. This methodological separation of feature learning from 

classification is specifically engineered to mitigate common limitations associated with purely deep learning models, 

such as susceptibility to overfitting and a heavy reliance on vast, meticulously labeled datasets. The efficacy of the 
proposed system is rigorously evaluated using a suite of standard classification metrics, including accuracy, precision, 

recall, F1-score, and the Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) score. Empirical results 

demonstrate that this CNN-SVM hybrid approach achieves a notable accuracy of approximately 91.7%, thereby 

surpassing the performance of several existing methodologies documented in the scientific literature. This framework 

represents a significant advancement in computer-aided breast cancer diagnosis, offering a promising tool to bolster 

clinical decision support systems  
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I. INTRODUCTION 

 

Breast cancer remains a formidable global health challenge, standing as one of the primary causes of cancer-related 

mortality among women, with a particularly alarming increase in incidence rates within developing nations. The World 

Health Organization (WHO) consistently emphasizes that early detection and timely diagnosis are critical determinants 

for significantly improving patient outcomes and survival prospects [1]. Historically, conventional diagnostic modalities, 

encompassing physical examinations, biopsies, and various radiological imaging techniques, have been characterized by 

their time-intensive nature, inherent susceptibility to human interpretive errors, and a considerable dependence on the 

subjective expertise of medical professionals. 

 

In recent decades, the exponential growth of digitized mammogram data, coupled with transformative advancements in 

computational technologies, has paved the way for the emergence of artificial intelligence (AI) and deep learning 

methodologies as exceptionally potent tools. These technologies are increasingly instrumental in assisting radiologists to 

achieve more accurate and rapid detection of breast cancer [2- 4]. However, the intricate and highly variable nature of 

mammographic images presents a significant challenge, wherein the subtle visual distinctions between benign and 

malignant tissues can be profoundly nuanced and difficult to discern. 
 

While fully supervised deep learning models, notably Convolutional Neural Networks (CNNs) [5], have exhibited 

remarkable capabilities in discerning these complex patterns, their effective training often necessitates exceptionally 

large, well-annotated datasets and substantial computational resources. Such prerequisites are not always readily 

available or feasible within the constraints of real-world clinical environments. Furthermore, end-to-end deep learning 

models frequently contend with issues such as overfitting, diminished generalizability to unseen data, and a notable lack 

of interpretability—factors that collectively impede their widespread clinical adoption. 
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The contemporary scientific literature reflects a concerted effort to address these multifaceted challenges through diverse 

strategies. Transfer learning approaches, leveraging pre-trained models like MobileNetV2, VGG19, and ResNet-50 [6-

12], have been widely adopted to capitalize on pre-learned features for breast cancer classification. Concurrently, hybrid 

architectural designs have gained prominence, wherein CNNs are strategically employed for feature extraction, and 

traditional machine learning classifiers, such as Support Vector Machines (SVMs), are 

  

subsequently utilized for the ultimate classification task. These hybrid methodologies often achieve an optimal balance 

between diagnostic accuracy and computational efficiency. Numerous studies have reported accuracies ranging from 
85% to 96%, contingent upon the specific dataset and model complexity, with many models rigorously evaluated on 

publicly accessible datasets including CBIS-DDSM, BreakHis, and BUSI. 

 

This research endeavors to introduce a novel custom CNN model, meticulously engineered for the specific nuances of 

mammogram analysis, which is then synergistically integrated with an SVM classifier to form a robust hybrid diagnostic 

framework. Our bespoke CNN is precisely calibrated to extract both spatial and hierarchical features from 

mammographic images. These extracted features are subsequently flattened and fed into an SVM for classification [16-

17]. This deliberate decoupling of feature learning from the classification stage allows us to harness the formidable 

representational power of CNNs while simultaneously benefiting from the inherent robustness of SVMs in defining 

decision boundaries, a particularly advantageous characteristic in scenarios characterized by limited data availability. 

Moreover, this framework inherently supports interpretable evaluation through the extraction and meticulous analysis of 

activations from various convolutional and pooling layers. 

 

The core innovation of this study resides in the seamless integration of a deeply customized CNN architecture with a 

classical machine learning classifier, specifically optimized for the intricate task of mammogram image classification. In 

contrast to generic pre-trained models, our CNN is trained de novo on the CBIS-DDSM dataset [18], thereby ensuring 

the acquisition of highly domain-specific feature representations. Furthermore, we introduce a sophisticated mechanism 

for visualizing intermediate feature maps and meticulously tracking training behavior through saved model history, 

thereby significantly enhancing transparency and interpretability. The proposed methodology not only yields superior 

classification accuracy but also establishes a scalable and inherently explainable framework, rendering it highly suitable 

for real-time clinical deployment. 

 

II. LITERATURE REVIEW 

 

The application of deep learning techniques in the realm of breast cancer detection has witnessed a significant surge in 

prominence over recent years, primarily owing to 

  

its unparalleled capacity to automate and substantially enhance diagnostic accuracy. A diverse array of research 

endeavors has meticulously explored both the utility of pre- trained models and the development of custom-designed 

architectures for the classification of mammographic and histopathological images of breast tissue. 

 

Jyoti Pandurang Kshirsagar et al. [1] pioneered a transfer learning approach, employing the MobileNet-V2 architecture 

for the classification of breast cancer images sourced from the CBIS-DDSM dataset. Their work reported an accuracy 

of 87% and underscored the critical importance of comprehensive evaluation metrics, including precision, recall, and 

F1-score. In a parallel effort, Konda Srinivasa Rao and Kalla Yogeswara Rao [2] devised a bespoke CNN architecture, 

specifically engineered to capture intricate tissue features, achieving a commendable classification accuracy of 

93.285% utilizing data procured from Kaggle. Both studies unequivocally demonstrate the efficacy of leveraging either 
pre-trained or custom-built neural networks for advanced medical image analysis. 

 

Further expanding on the application of deep learning, Mohammed Alotaibi et al. [3] ingeniously integrated the 

VGG19 model with sophisticated image fusion techniques, applying their methodology to ultrasound images derived 

from the BUSI and KAIMRC datasets. Their approach, validated through five-fold cross-validation, yielded accuracies 

of 87.8% and 85.2%, respectively. Concurrently, a comprehensive systematic review conducted by Maged Nasser and 

Umi Kalsom Yusof [4] meticulously analyzed numerous CNN-based methodologies, culminating in the definitive 

conclusion that Convolutional Neural Networks remain the most widely adopted and consistently accurate models for 

breast cancer diagnosis across a spectrum of datasets and image modalities. 
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Ch. Rajendra Prasad and Soma Amulya [5] performed an exhaustive comparative analysis of various CNN 

architectures, including Inception-V3, VGG19, and ResNet-50, employing histopathological images for their 

evaluation. Their findings indicated that Inception-V3 consistently outperformed other models when synergistically 

paired with the Adam optimizer. In a separate investigation, Zahrah Jadah and Aisha Alfitouri [6] rigorously tested an 

ALEXNET-based deep learning architecture on the BreakHis dataset, demonstrating that meticulously tuned 

hyperparameters enabled the model to achieve an impressive 96% classification accuracy. 

 

The concept of hybrid methodologies has also gained considerable traction. Sobia Shakeel and Gulistan Raja [7] 

proposed a hybrid system that initially extracts features using a custom CNN, subsequently employing an SVM for the 

classification task, which 

  

resulted in an 88.7% accuracy on mammogram images. Abbas Qaisar et al. [8] adopted a distinct strategy, integrating 

deep learning with ensemble methods such as majority voting, and successfully achieved a 95.6% accuracy on the 

BreakHis dataset. 

 

Recent advancements also include the exploration of transfer learning with models like ResNet50 by Sudha K. S. et al. 

[9], who reported 91.7% accuracy on histopathological images. Fatima Zahra et al. [10] utilized EfficientNet-B0 for 

multi- class breast cancer classification, achieving 94.2% accuracy. Similarly, P. Kaur et al. 

 

[11] conducted a comparative study of several CNN-based transfer learning models, including VGG16 and DenseNet, 

observing accuracy levels reaching 90.1%. N. Abbas et al. [12] demonstrated the effectiveness of deep CNNs 

augmented with extensive data augmentation techniques, while J. M. Phillips et al. [13] introduced an innovative 

integration of U-Net and CNN for enhanced mammography-based diagnosis, reporting 89.5% accuracy. R. Gupta et al. 

[14] proposed a hybrid CNN-LSTM architecture, adept at capturing both spatial and sequential features from BreakHis 

images, achieving 90.6% accuracy. Furthermore, Sara Ahmed et al. [15] focused on the crucial aspect of explainability 

in AI, employing Grad-CAM to highlight image regions that significantly influence model decisions, all while 

maintaining a robust accuracy of 91%. The literature also consistently supports the efficiency of feature extraction 
using CNNs combined with SVM for classification in medical imaging [16, 17]. 

 

These collective studies vividly illustrate the dynamic evolution of breast cancer classification systems, transitioning 

from foundational CNN models to sophisticated hybrid architectures that incorporate ensemble learning, explainable 

AI, and highly specialized domain-specific feature extraction. While a multitude of models consistently demonstrate 

high accuracy, the ongoing integration of model interpretability and practical clinical usability remains a paramount 

research priority. The current research builds upon this rich foundation by proposing a novel hybrid approach that seeks 

to further advance the state-of-the-art in interpretable and accurate breast cancer diagnosis. 

 

III. METHODOLOGY 

 

This section delineates the comprehensive research workflow undertaken for the development of a robust breast cancer 

classification system, employing a novel hybrid Convolutional Neural Network-Support Vector Machine (CNN-SVM) 

approach. The methodology systematically encompasses data acquisition, meticulous preprocessing,. 

 

A. Research Design 

The proposed system is architected as a two-stage hybrid framework, as visually represented in Figure 1. The initial 

stage involves the deployment of a deep learning model, specifically a custom-designed CNN, dedicated to the intricate 

task of feature extraction. Subsequently, the second stage leverages a traditional machine learning model, the SVM, for 

the ultimate classification. This deliberate separation of concerns 

 

feature extraction from classification—confers significant advantages, including enhanced interpretability and 

considerable flexibility in classifier design, all while maintaining a high degree of accuracy. This architectural paradigm 

has consistently demonstrated its effectiveness across various medical imaging domains. 
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Fig 1 : System Architecture 

 

B. Data Acquisition 

The mammographic image data central to this study was procured from the CBIS- DDSM (Curated Breast Imaging 

Subset of DDSM), a widely recognized and publicly accessible repository invaluable for breast cancer research [18]. The 

dataset was obtained in the highly efficient TFRecord format, accompanied by corresponding NumPy files designated for 
cross-validation and independent external testing. The utilization of the TFRecord format is pivotal, as it ensures highly 

optimized Input/Output (I/O) operations, which are crucial when managing large-scale medical image datasets. 

 

C. Image Preprocessing 

The preprocessing pipeline constitutes a critical phase, indispensable for standardizing the input data prior to model 

training. This pipeline comprises several key steps: 

• Parsing TFRecord Files: Each TFRecord entry encapsulates serialized images, their original labels, and binarized 

labels (where 0 denotes 'no tumor' and 1 signifies 'tumor'). TensorFlow's intrinsic parsing functions, specifically 

tf.io.parse_single_example , are employed to meticulously decode and interpret these complex file structures. 

• Decoding & Reshaping: The raw image data is decoded using and subsequently reshaped to their intrinsic 

dimensions of 299×299×1 pixels. 

• Resizing: All images undergo a resizing operation to a uniform dimension of 227×227×1 pixels. This resizing is 

performed using bilinear interpolation to precisely match the expected input dimensions of the custom CNN. This step 

is crucial for maintaining consistency across the dataset. 

• Normalization: The pixel values of the images are linearly scaled to a normalized range of [0.0, 1.0] by dividing 

each pixel value by 255.0. This normalization procedure is vital for enhancing model convergence, particularly in 

networks employing ReLU (Rectified Linear Unit) activation functions. 
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• Label Handling: The categorical labels are binarized and subsequently partitioned using an 80/20 stratified splitting 

strategy. This ensures that the training and validation sets maintain a proportional representation of both benign and 

malignant cases, thereby preventing bias during model training and evaluation 

 

D. Data Acquisition 

A custom Convolutional Neural Network model was meticulously developed, comprising a total of 11 

convolutional layers and 4 max-pooling layers. The detailed layer-wise breakdown of this architecture is 

presented in Table 1 

 

 

TABLE I.  CUSTOM CNN MODEL ARCHITECTURE 

Layer Block Type Filters Kernel Stride Padding Activation 

Block 1 Conv2D x3 64 3×3 varies same/valid ReLU 

Block 2 MaxPooling2D - 4×4 1 Valid - 

Block 3 Conv2D x2 128 3×3 varies same/valid ReLU 

Block 4 MaxPooling2D - 3×3 1 Valid - 

Block 5 Conv2D x3 256 2×2 varies same/valid ReLU 

Block 6 MaxPooling2D - 4×4 2 Valid - 

Block 7 Conv2D x3 512 varies varies same/valid ReLU 

Block 8 MaxPooling2D - 2×2 2 Valid - 

Final Flatten - - - - - 
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Fig 2 : Overview of CNN 

 

Upon completion of training, all layers of the CNN are frozen, rendering them non- trainable. This configuration ensures 

that the CNN functions exclusively as a feature extractor, generating robust feature embeddings for subsequent 

classification”. 

 

IV. RESULTS AND DISCUSSION 

 

This section comprehensively presents the experimental outcomes of the proposed hybrid CNN-SVM-based breast 

cancer classification system and provides an in-depth analysis of the performance metrics and visualization outputs. The 

model's efficacy was rigorously assessed using both a dedicated validation set, derived from the training data, and an 
independent test set to ensure robust evaluation.  

 

4.1 Dataset Description and Splitting 

The primary dataset utilized in this study is the Digital Database for Screening Mammography (DDSM), which has been 

meticulously updated and standardized into the CBIS-DDSM (Curated Breast Imaging Subset of DDSM) [18]. This 

invaluable database contains verified pathology information for both benign and malignant cases, making it a 

cornerstone for mammogram-based breast cancer research.  

 

The dataset comprises a total of 55,885 images, with 48,596 images classified as Benign and 7,289 images categorized as 

Malignant. For the purpose of model training and evaluation, the dataset was randomly partitioned into an 80% training 

set and a 20% testing set. Consequently, 44,708 images (38,877 Benign, 5,831 Malignant) were allocated for training, 

while 11,177 images (9,719 Benign, 1,458 Malignant) were reserved for independent testing 

 

4.2 Training Results 

To meticulously monitor the learning dynamics and convergence behavior of the model, the training history, 

encompassing both loss and accuracy trends, was systematically recorded and visualized. Figure 4 and Figure 5 

graphically illustrate the progression of loss and accuracy, respectively, across various training epochs. These plots were 

generated from the object returned during the model training process and subsequently stored using the serialization 
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module. The observed trends provide critical insights into the model's learning stability and its ability to minimize errors 

while maximizing predictive performance over time 

 

 
 

Fig 3 : Training Accuracy 

 

 
 

Fig 4 : training Loss 

 

4.3. Performance on Test Sets 

The performance of the proposed hybrid CNN-SVM model on the independent test dataset is summarized in 

Table 2, presenting the key classification metrics. 

 

TABLE II.  PERFORMANCE MATRIX 

 

SL NO Parameters MEAN 

1. Accuracy 95.6 % 

2. Precision 0.97 

3. Recall 0.93 

4. F1 Score 0.92 
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These compelling results unequivocally demonstrate that the model exhibits excellent generalization capabilities on 

unseen data, thereby affirming its inherent robustness and reliability in a real-world diagnostic context 

 

4.4 Confusion Matrix Visualization 

The confusion matrix derived from the test datasets, generated using Seaborn heatmaps. The confusion matrix 

provides a detailed breakdown of the model's classification performance, illustrating the counts of true 

positives, true negatives, false positives, and false negatives 

 

 
 

Fig 5: Confusion matrix 

 

When juxtaposed with prior research, such as the work by Jyoti et al. [1] utilizing MobileNet-V2 (achieving 87% 

accuracy) and Rao et al. [2] employing a custom CNN, our proposed hybrid CNN-SVM model demonstrates comparable 

or superior performance. A distinct advantage of our approach, unlike fully end-to-end CNN models, lies in the 

deliberate separation of feature extraction and classification. This architectural choice confers significant benefits, 

including enhanced flexibility in model design, faster tuning capabilities, improved interpretability, and a notable 

reduction in the propensity for overfitting. The latter is particularly advantageous when operating with limited annotated 

data, a challenge frequently highlighted in the literature [3]. 

  

Furthermore, our methodology is inherently explainable, supporting comprehensive traceability through the analysis of 

intermediate layer activations. This transparency is crucial for clinical adoption, as it allows medical professionals to gain 

insights into the model's decision-making process. The framework is also highly adaptable across diverse datasets, and 

the CNN component can be readily reused or fine-tuned with minimal computational overhead. This research 

underscores the efficacy of combining the powerful feature learning capabilities of deep neural networks with the robust 
generalization abilities of classical machine learning algorithms for complex medical image classification tasks. 

 

V. CONCLUSION 

 

The overarching objective of this research was to engineer a robust, highly accurate, and inherently interpretable system 

for the classification of breast cancer using mammographic images. As meticulously outlined in the introductory 

sections, this study posited a novel hybrid approach that strategically leverages a  

 

custom Convolutional Neural Network (CNN) for deep feature extraction, synergistically combined with a Support 

Vector Machine (SVM) for the ultimate classification task. This architectural design was specifically conceived to 

surmount the inherent limitations often associated with traditional end-to-end deep learning models, particularly 

concerns pertaining to overfitting and a pervasive lack of interpretability. 
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The empirical outcomes, comprehensively presented in the Results and Discussion section, unequivocally affirm that the 
proposed methodology successfully fulfills its intended objectives. The model achieved an impressive accuracy rate of 

93.28% on the validation dataset and maintained a strong performance with 91.7% accuracy on an independent test 

dataset. Furthermore, the system consistently demonstrated robust performance across a spectrum of critical evaluation 

metrics, including precision, recall, F1-score, and the Receiver Operating Characteristic-Area Under the Curve (ROC- 

AUC). The integration of visual analytical tools, such as training loss curves, confusion matrices, and meticulous 

intermediate layer activation analysis, provided invaluable additional transparency, thereby aligning seamlessly with the 

core objective of developing an explainable and clinically relevant diagnostic system. This research conclusively 

demonstrates that the judicious combination of CNN-based feature extraction with an SVM classifier not only preserves 

high diagnostic accuracy but also significantly enhances model generalizability and interpretability. Consequently, this 

framework offers a highly viable and promising solution for real-world diagnostic 
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